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Abstract: This paper presents novel measures of terrain traversability at three different
scales of resolution; namely Local, Regional, and Global Traversability Indices. The Local
Traversability Index is related by a sel of rules to local obstacles and surlace sollness, mea-
sured by on-board sensors mounted on the robot. The rule-based Regional Traversability
Index is computed from the terrain roughness and slope that, are extracted from video im-
ages obtained by on-board cameras. The Global Traversability Index is oblained [rom the
terrain topographic map and is based on the natural or man-made surface features such as
mountains and craters. Each traversability index is represented by four fuzzy scts with the
linguistic labels {POOR, LOW, MODERATE, HIGH}, corresponding Lo surfaces thal are

unsafe, moderately-unsafe, moderately-safe, or safe for traversal, respectively.

1. Introduction

Exploration of planetary surfaces and operation
in rough terrestrial terrain have been strong mo-
tivations for research in autonomous navigation
of field mobile robots in recent years. These ro-
bots must cope with two fundamental problems.
The first problem is to acquire and analyze the
terrain quality information on-line and in real
time, and to utilize it in conjunction with lim-
ited prior terrain imagery. The second problem
is to deal with imprecision in sensor measure-
ment and uncertainty in data interpretation in-
herent in sensing and perception of natural en-
vironments. Because of these two fundamen-
tal problems, outdoor robot navigation defines
a new research topic that is distinct from the
conventional indoor robot navigation in struc-
tured and benign man-made environments.

Robust on-line terrain characterization and tra-
versability asscssment is clearly a core resecarch
problem for autonomous lield robol navigation.
Two types of solutions have been proposed to
date by researchers at CMU and JPL. In the
CMU 1nethods [1-6], the robol. traversability is
computed along different arcs that correspond
to different steering angles. The traversability
of each arc is delermined mathemalically by a
weighted sum of the roll, pitch, and roughness of
the map cells along that arc, incorporating their
certainty values [1]. 'I'he JPL approach [7-12]
takes a sharp departure from analytical methods

and is centered on the Rule-Based Traversability
Index. 'T'his index is a novel concepl. that was in-
troduced in [7-8] as a simple lnguistic measure
for quantifying the suitability of a natural ter-
rain [or Lraversal by a mobile robot. This per-
ceptual approach to terrain assessment is highly
robust to mcasurcment noiscs and intcrpreta-
tion errors because ol the use of fuzzy sels in
a linguistic rule-based system. This approach
is analogons to the human judgment, reasoning,
and decision-making regarding assessment and
traversal of a natural terrain.

Earlicr papers by JPI. rescarchers have focused
on regional terrain characterization and tra-
versability assessment, typically up to 5 meters
away from the robot. In this paper, the tra-
versabilily index concept is extended (o both
local and global terrain, to complement the re-
gional measure. Scctions 2-4 discuss torrain tra-
versability analysis at local, regional, and global
scales. The paper is concluded in Section 5 with
a review of key featurcs and arcas of futurc re-
search.

2. Local Traversability Analy-

sis
For local traversability analysis, we focus on the
terrain quality in close proximity of the mobile
robol. Uypically, this covers a distance of up to
0.5 meters away from the robot. The two at-



tributes of the local terrain thal conlribute (o
its traversability are local obstacles and surface
softness, as described below.

2.1. Local Obstacles

T.ocal obstacle is the gencric name that refers to
large rocks (“posilive” obstacles) or deep ditches
(“negative” obstacles) that are impassable by
the robot. Typically, a wheeled mobile robot
wilh rocker-bogie design can go over obstacles
1-1/2 times its wheel diameter {13]. Smaller ob-
stacles arc thercfore not considered as hazards
Lo the robol mobilily. Larger obslacles, how-
ever, impede the robot motion and must be con-
sidered. The presence of large obstacles can be
detected in real-time by proximity sensors (for
rocks) and cameras (for ditches) mounted on the
robot [11]. Different types of proximity scnsors
can be used for this purpose, ranging from low-
resolution infra-red sensors to high-resolution
laser range-finders |see, e.g., 14|, and the range
of operation of these local sensors is typically
0.2 meters to 1 meter. Each local sensor (such
as proximity scnsor or camera) measures the dis-
tance d, between the robot and the closest ob-
stacle within its range of operation, and this in-
formation is continously updated during robot
motion. The closest obstacle distance d, is rep-
resented by three fuzzy sets with the linguistic
labels {VERY — NEAR,NEAR, FAR}, with
the trapezoidal membership functions shown in
Figure la. Note that we can have different de-
finitions of these membership functions for the
front obstacle and the side (left and right) ob-
stacles so that front and side traverse-local he-
haviors will have different sensitivities. Observe
that precise measurement of the obstacle dis-
tance is not needed, because of the multi-valued
nature of the linguistic fuzzy sets used to de-
scribe it.

2.2. Surface Softness

Local surface softness directly affects the trac-
tion of a mobile robot traversing a challenging
terrain. Different ground material, whether soft
sand, loose gravel, or compacted soil, exhibit
different contributions to the robot’s ability to
travel effectively on the surface. For example,
extremely gravely surfaces cause excessive wheel
slippage, and thus are deemed unsafe for traver-
sal. Soft sandy surfaces may cause the robot to
sink, and should also be avoided. Surface mate-
rial properties thus contribute directly to robot
safety and must be included in local terrain as-
sessment.

There are several melhods for assessing the sur-
face softness in close proximity of the robot. One

concepl is a non-contact sensor (hal cousists of
a pneumatic probe which will output a puff of
air toward the ground surface and a laser dis-
placement sensor that will detect the associated
ground displacement. For “soft” ground, the de-
tected surface displacement will be very large
and for “hard” ground, the displacement value
will be minimal. Another concept is a small
force sensor carried by a simple mechanism at-
tached to the robot that makes physical contact
with the nearby surfaces and senses the resulting
contact forces [15] (analogous to a blind person
with a walking stick). These sensors will enable
the robot to distinguish hazardous soft sandy
region from safe hard compacted soil. Yet an-
other method to determine the surface type, and
as a result the surface softness, is based on vi-
sual texture analysis using neural networks [11].
This is a two-step approach; in the first step a
neural network classifier is trained off-line using
a set of known sample texture prototypes. In
the second step, the trained neural network is
used to recognize the ground texture acquired
during run-time. The perceived surface type is
then fed into a look-up table for obtaining sur-
face softness y. This softness factor is character-
ized by three fuzzy sets with the linguistic labels
{SOFT,MEDIUM,HARD}, with the trape-
zoidal membership functions shown in Figure
1b. Again, observe that precise measurement
of the surface softness is not needed, because of
the multi-valued nature of the linguistic fuzzy
sets used to describe it.

2.3. Local Traversability Index

Ounce the characteristics of the local Lerrain are
obtained in terms of the closest obstacle dis-
tance d, and local surface softness -+, this in-
formation can be incorporated into a single in-
dex of local traversability 7;. This index is rep-
resented by four fuzzy scts with the linguistic
labels {POOR, LOW, MODERAI'E, HIGH},
with the trapezoidal membership functions
shown in Figurc le. The relationship between
the Local Traversabilily Index 7; and the ob-
stacle distance d, and surface softness 7 is ex-
pressed by a sct of simple linguistic fuzzy logic
rules. These rules are summarized in Table 1,
with d, and 7y as two inputs and 7; as the single
output.

Observe that by utilizing fuzzy logic, the out-
comc of the rule sct 7; is not dependent on ezact
measurements of the obslacle distance d, and
the surface softness . This feature allows robust
assessment and classification of the local terrain
using imprecise sensors. This is because in Lhe
fuzzy logic formulation, the input variables d,,



and vy are allowed Lo vary over a range of values
without altering the output variable -

3. Regional Traversability

Analysis

The regional traversability covers a zone of typ-
lcally up to 5 melers away [rom the mobile ro-
bot. The physical and geometrical qualities of
the terrain scgment, within this zone determine
ils ease-ol-traversal by the mobile robot. Severs]
characteristics of the terrain can be considered
for this purposc. The most notable oncs arc the
lerrain slope and roughness. These two char-
acteristics are extracted from video image data
obtained by the sterco cameras mounted on the
mobile robol, as described below [11].

3.1. Terrain Roughness

The terrain roughness can be defined in sev-
eral different ways. In this paper, we choose
an intuitive approach by defining the region
roughness in terms of the sizes and concentra-
tion of rocks in that region. The vision al-
gorithm is applied to stereo camera images of
the viewable scene to identify target ohjects
located on the ground plane using a region-
growing method [16]. Rock sizes are classified
as {SMALL, LARGE} depending on their pixel
counts relative to a user-defined threshold. Rock
concentrations are classified as { FEW, MANY}
depending on the number of rocks in the region
relative to a user-specified limit. The terrain
roughness is then determined based on the rock
sizes and concentration in the region, and is
represented by the four linguistic fuzzy sets
{SMOOTH, ROUGH, BUMPY, ROCKY},
with trapezoidal membership functions. Tahle
2 summarizes the definition of terrain roughness
in terms of rock sizes and concentration using a
set of simple linguistic fuzzy logic rules.

3.2, Terrain Slope
To obtain the terrain slope [rom a pair of
stereo camera images, we first calculate the
real-world Cartesian z, 3, 2 components of the
ground plane boundary. Tsai’s camera cali-
bration model [17] is used to derive the rela-
tionship between the camers image and the
real-world objeclt position for a single cam-
era. The images from both cameras are then
maftched in order to retrieve 3D information.
The average slope value @ is then determined
using the equation o = %va atan2(z;, z;),
where NV is the number of points viewable
in both images. The (errain slope o 15 rep-
resented by the four linguistic fuzzy sets

{FLAT,SLANTED, SLOPED,STEEPY,
with trapezoidal membership functions.

3.3. Regional Traversability Index
Once the characteristics of the viewable scene
are extracted, the terrain traversal must be as-
sessed. To accomplish this task, we have devel-
oped a set of fuzzy logic rules which assess the
traversability of the terrain based on the charac-
teristics present in the given image data set. The
Regional Traversability Index encapsulates mul-
tiple terrain characteristics into a single index
and succinctly quantifies the ease-of-traversal of
the terrain by the mobile robot.

In order to characterize the terrain, the ter-
rain characteristics are first converted into lin-
guistic representations using [uzzy sels. These
sets allow each terrain characteristic to be Tepre-
sented based on grades of membership to uscr-
defined linguistic Muzzy sets. The membership
functions of these sets are then used in a set
of fuzzy logic rules to infer terrain traversabil-
ity. The outpul [rom the rule base is the Re-
gional Traversability Index which represents the
relative level of safety associated with travers-
ing the viewable area. T'his index is repre-
sented by four fuzzy sets with the linguistic
labels {POOR, LOW, MODERATE, HIGHY,
with lrapezoidal membership functions. B y uli-
lizing fuzzy logic, the user can specify rules that
are not dependent on ezact measurements of
the terrain characteristics, thus allowing robust
analysis of the terrain. These simple fuzzy rela-
tions arc summarized in Table 3.

4. Global Traversability Analy-

518

In previous sections, we present local and re
gional traversability analyses using on-hoard
sensors, with ranges of resolution typically 0.5
meters and 5 meters. In this section, a different
type of terrain traversability is discussed which
is based on the (errain map and operates in tens
of meters resolution.

4.1. Global Traversability Map
The Global Traversability Map classifies Lhe ter-
rain segments based on how difficult and un-
safc cach segment is for traversal by thc mo-
bile robot. The map building process involves
two steps. We first identify relevant topographic
terrain features (such as ravines, mountains, and
valleys) as observed in aerial imagery, which con-
tribute to traversal difficulty. Various image-
based techniques can be used to identify these
relevant terrain fealures. For example, Lo iden-
tify ravines, an approach can be utilized which



locates curving linear features embedded in (he
image using edge-detection techniques [18]. For
identifying mountains and hills, the peaks and
valleys can be found based on contour lines [19].

Once the relevant topographic terrain features
are extracted, they are fed into a linguistic rule
set for constructing the Global Traversability
Map. This map grades the level of risk (or
safety) associated with traversal over a given
terrain segment by using a multi-valued [0, 1]
index.

Each segment of the terrain map is as-
signed a Traversability Index that reflects
the terrain quality for traversal. The seg-
ment classification can be performed using
four fuzzy sets with the linguistic labels
{POOR, LOW, MODERATE,HIGHY}, as in
Sections 2-3, with trapezoidal membership func-
tions. Each traversability class designates the
traversal risk/difficulty associated with that
segment, namely unsafe, moderately-unsafe,
moderately-safe, and safe.

For cxample, a large gorge can casily be des-
ignaled as untraversable, and thus will receive
a POOR traversability index; whereas a moun-
tain or a hill depending on the slopc may receive
a POOR to MODERATE (raversabilily index.
Note that, while the mountain peak has a POOR
traversability value, as we move down slope to
the foothills, (he Lraversabilily can change o
LOW and MODERATE. Therefore, the moun-
tain can be characterized by a sot of three con-
centric circles with different traversability in-
dices as shown in Figure 2a.

We define a fixed map-based {z,y} coordinate
frame-of-reference. At any time, the robot is
aware of its own coordinates on the traversabil-
ity map using its start position and the encoder
counts of its wheel motors or using any local-
ization method. Typically, the robot start posi-
tion is taken to be the origin of the coordinate
frame for simplicity. To represent the Global
Traversability Map to the robot navigation sys-
tem, the user can, for instance, choose any of
the following two representations:

e Traversability Regions: [Tach segment is
approximately bounded by the coordinate
inequalilies {Xmm <z < Kmag, Ymin <
Y < Yrnan}, as shown in Figure 2b. This, in
cffect, defines the roctangular arca in the
terrain map thal is occupied by (Le partic-
ular feature. Alternatively, each segment
is enclosed by a geometric shape such as a
circle. The enclosing circle is mathemati-
cally described by (z — )%+ (y — b)% = 72,

where (a, b) are Lhe cenler coordinates and
7 is the radius—an example is shown in Fig-
ure 2b.

o Traversability Grid: We overlay on the
map an MxN grid composed of MN
equal-sized grid cells, where M and NV are
user-defined numbers chosen hased on the
map resolution and the robot footprint,
Each grid cell is assigned a traversabil-
ity index that reflects the minémum index
of all terrain segments occupying that cell
(see Figure 2c).

The procedure for generation of the Global Tra-
versability Map is carried out off-line. Once
this map is generated, its mathematical model
is down-loaded in the memory of the computing
platform mounted on the robot. Trom the robot
navigation perspective, the Global Traversabil-
ity Map is available {0 the robot navigation sys-
tem prior to the robot movement.

4.2. Global Traversability Index

Once the Global Traversability Map is gener-
ated, we can compule the Global Traversabilily
Index of the mobile robot in different. directions
at any time. For this purpose, we proceed as
follows:

¢ Decompose the terrain traversable by the
mobile robot into several circular sectors
centered at the current robot position and
having radius R,. The value of R, deter-
mines the reaction distance of the robot
and is the distance at which we wish the
robot to react to the global surface fea-
tures.

e For each circular sector, assign the rmini-
mum traversability index of the map seg-
ments contained within that sector. This
can be obtained using geometric calcula-
tion of the intersections between the sector
and the segments. The rationale for using
the minimum index is to enhance robot
safety, given the fact that the map infor-
mation and terrain classification arc offen
inaccurate and approximate,

The outcome of this procedure is the global tra-
versabilily index 7, thal corresponds Lo a par-
ticular sector.



5. Conclusions

Multi-scale traversability indices are introduced
in this paper for a field mobile robot operat-
ing on a challenging natural terrain. These in-
dices quantify the difficulty /risk associated with
the robot mobility at three scales of resolution.
Terrain-based navigational behaviors based on
traversability indices are critical components of
any field robot navigation strategy. These be-
haviors provide a means for incorporating differ-
ent terrain characteristics into the robot naviga-
tion logic. Current research is focused at imple-
mentation and field testing of the methodology
described in this paper on a Pioneer all-terrain
mobile robot.
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Figure 2a. Traversability map representation of a mountain or a hill
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Figure 2¢. Overlay of a traversability grid on a map






